La inteligencia artificial y las matemáticas no se llevan demasiado bien. A pesar de que los avances en IA han servido para crear robots que montan muebles, derrotar a uno de los mejores jugadores de Go en diversas ocasiones o buscar tejidos humanos infectados, a la IA todavía le queda camino para resolver problemas complejos en los que intervienen ecuaciones con símbolos. Entender lo que hay detrás de los símbolos
Como cualquier persona con conocimientos básicos de matemáticas sabrá, la mayoría de ecuaciones se expresan usando abreviaturas. "cos" es coseno, x2 es x multiplicado por x, y así sucesivamente. El logro de los investigadores de Facebook AI Research ha sido conseguir que la IA entienda dichas abreviaturas haciéndolas más básicas y construyendo árboles de expresión.
Con eso claro, el modelo estaba listo para ser entrenado. Los investigadores crearon un dataset con expresiones de hasta 15 nodos internos (15 ramificaciones), cuatro operadores binarios (suma, resta, multiplicación y división) y quince operadores unarios (exp, log, sin, cos, tan....).
Tras filtrar los resultados para eliminar cualquier expresión que no se pudiera integrar, se consiguió un dataset de 80 millones de ecuaciones diferenciales de primer y segundo grado y 20 millones de expresiones integradas por partes.
La IA aprendió a resolverlas, ergo aprendió a derivar e integrar una expresión matemática compleja. Finalmente, la IA se puso a prueba con un 5.000 expresiones que no conocía y se compararon sus resultados con los obtenidos por Maple, Matlab y Mathematica, tres softwares que cualquiera puede usar para los mismos fines.
Los resultados son que el modelo desarrollado por los investigadores de Facebook obtiene una precisión cercana al 100% en tareas como la integración de funciones, mientras que Mathematica se queda en un 85%.
Además, los programas mencionados anteriormente no consiguen solucionar las ecuaciones tras 30 segundos de cáculo, mientras que la red neuronal de Facebook suele encontrar una solución precisa en menos de un segundo, en muchas ocasiones descubriendo varias soluciones equivalentes al mismo problema.
Poco a poco, la inteligencia artificial va mejorando su desempeño en matemáticas, y parece que este enfoque centrado en simplificar las ecuaciones y hacerlas "comprensibles" funciona. De hecho, un enfoque similar fue el que siguió Google cuando a principios de año desarrolló una IA capaz de demostrar más de 1.200 teoremas matemáticos. El hito no es tanto que la IA sepa matemáticas, sino que, de alguna forma, es capaz de desarrollar una suerte de razonamiento matemático.
Fuente : MIT Technology Review
- Visto: 557

